Unpaid caregiving & paid work and over lifecourses: different pathways, divergent outcomes and the role of social attitudes

- 1. Aims, summary of results and context
- 2. Data and Methods
- 3. Caregiving-employment pathways
- 4. Characteristics of people following different trajectories
- 5. Wealth, health and wellbeing outcomes
- 6. Summary

Fiona Carmichael and Marco Ercolani

University of Birmingham 2015

AIMS

- Persistence and interdependence: Categorise the different ways people combine paid work, informal caring and childcare responsibilities over time.
- Pre-determination: Explore how gender, age-cohort and social attitudes shape the pathways that people follow
- Diverging/converging outcomes ~ Path dependence: Investigate how income, subjective wellbeing and health evolve along different employment-caregiving pathways.

Summary of Results

- Persistence/interdependence: 5 clusters of employmentcaregiving pathways over 15-20yrs
- Pre-determination: Employment-caregiving histories are preshaped by gender, age and social attitudes.
- Path dependence: Income, wellbeing and health gaps between least and most caring intensive pathways widen

CONTEXT-WHY THIS MATTERS

Context

Demographic Ageing

- Pensions crisis
 - Working lives extended
 +increasing female
 employment participation
- Increase in degenerative diseases (e.g. dementia)
 + emphasis on costcontainment and efficiency in healthcare.
 - Increased demand for informal care for older adults

Policy issue/question

 Will the supply of unpaid care meet increased demand?

 "understanding what motivates the provision of caring labor is a crucial element for sustainability and equitably meeting the needs of contemporary societies" Adams and Sharp 2013:101

DATA AND METHODS

Data:

- 20 waves of the British Household Panel Survey + UK Understanding Society (BHPS-US).
- 4339 Caregiving-employment sequences over 15-20yrs

Methods

- 1. Persistence: 5 Pathways identified using OM and clustering (Brzinsky-Fay *et al.* 2006; Potârcă *et al.* 2014)
- 2. Pre-determination: MNL Regression analysis to identify characteristics of people following pathways:
 - Gender, age-cohort, attitudes, income, health and wellbeing
- 3. Diverging outcomes: Difference in differences analysis
 - Income, wellbeing and health, baseline-follow-up outcomes for the 5 clusters (~ control and treated)

1.1 SEQUENCE ANALYSIS: CODING

- <u>3 Employment status</u>: (i) Employed full-time (FT work); (ii) Employed part-time (PT work); (iii) Not Employed; (iv) Student.
- 3 Informal care status: (i) Not undertaking informal care (IC=0); (ii) Caring for less than 20 hours a week (IC<20hrs); (iii) Caring at least 20 hours a week (IC>=20hrs).

"Is there anyone living with you who is sick, handicapped or elderly whom you look after or give special help to (for example, a sick or handicapped (or elderly) relative/ husband/ wife/ friend, etc)?"

"Do you provide some regular service or help for any sick, handicapped or elderly person not living with you?"

 2 Responsibility for young children: (i) Child aged seven or younger in household (Has child<8); (ii) No child aged seven or younger in household (No child<8).

 23 interacted states but because of small numbers only use 13

Observed state (person-years)	Frequency	Percent
1 FT work, IC=0, No child<8	27,491	33.7
2 FT	5,573	6.83
3F 16.19% of states involve	4,239	5.2
4 F student carers)	436	0.53
5 P 20.54% of caregiving is time	7,327	8.98
6 P intensive (≥ 20 hrs p. wk) 38 74 % of participants had been	2,708	3.32
7P caregivers for at least one year	1,959	2.4
8 PT work, 107 - domes	333	0.41
9 Student	1,567	1.92
10 Not Employed, IC=0, No child<8	21,042	25.8
11 Not Employed, IC=0, Has child<8	2,650	3.25
12 Not Employed, IC<20hrs	4,296	5.27
13 Not Employed, IC>=20hrs	1,943	2.38
Total	81,564	100

State distribution plot for the whole sample

State distribution plot by age cohort ~ synthetic life cycle

State distribution plot by gender

1.2 OM and cluster analysis

CAREGIVING PREVALENCE BY CLUSTER

Cluster	No. of caregiving states	% of all caregiving states	% of all caregiving states <u>></u> 20hrs
1 FT careers	1,840	13.79	5.14
2 Evolving	2,854	21.40	8.85
careers			
3 PT careers	2,601	19.50	19.75
4 Caring	4,447	33.34	54.99
intensive			
5 Decaying	1,597	11.97	11.27
careers			
total	13,339	100.00	100.00

2. WHO IS IN THE CLUSTERS?

MNL log odds estimates for CLUSTER m (m=1-5) with base category cluster 1: $\ln \Omega_{m|1}(X) = \ln \frac{\Pr(CLUSTER=m|X)}{\Pr(CLUSTER=1|X)} = X\beta_{m|1}$

X = individual characteristics:

- o age-cohort, gender, educational attainment, marital status
- 3 attitudinal indices constructed from 14 attitudinal variables: Traditional Gender Roles, Traditional Family, Working Women
- o income, wellbeing, health

MNL dependent = CLUSTER	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Base category – Cluster 1	Evolving	Part-time	Caring	Decaying
	careers	careers	intensive	careers
Age*Trailing-edge_BB	1.01**	1.00	1.02**	1.07***
Age*Leading-edge_BB	0.98***	0.98***	1.03***	1.06***
Age*Post-depression_preBB	0.98***	0.99	1.06***	1.11***
Age*Pre-depression_preBB	0.98*	1.01*	1.10***	1.13***
FEMALE	1.27**	15.9***	3.77***	3.60***
ms_MarCohCiv	1.92***	2.13***	1.67***	0.82
HighQ Degree	0.97	1.16	0.78	0.76
HighQ_OtherH	0.88	0.80	0.78	0.51***
HighQ_ALevel	6	0.77	0.81	0.73
HighQ_OLevel Pathway	s are 🗱	0.83	0.81	0.76
Al:Traditional_C	hort ⁶	1.22***	1.23***	1.17**
A2: Traditonal_Fa	5	1.20***	1.33***	1.28***
A3: Working_Wo (llie-Cy	cle) ₅	0.83***	0.84**	0.81***
Income_Tot depend	dent ***	0.94***	0.96***	0.95***
GHQ_Wellbeing		0.98	0.97*	0.99
Health_status	1.08	0.91	0.74***	0.60***
Constant	0.85	0.42***	0.23***	0.18***
Observations		4105		
Log likelihood , LR χ^2 , Pseudo R^2	-4459.59	3942.28***	0.3	3065

MNL dependent = CLUSTER	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Base category – Cluster 1	Evolving careers	Part-time careers	Caring intensive	Decaying careers
Age*Trailing-edge_BB	1.01**	1.00	1.02**	1.07***
Age*Leading-edge_BB	0.98***	0.98***	1.03***	1.06***
Age*Post-depression_preBB	0.98***	0.99	1.06***	1.11***
Age*Pre-depression_preBB	0.98*	1.01*	1.10***	1.13***
FEMALE	1.27**	15.9***	3.77***	3.60***
ms_MarCohCiv	1.92***	2.13***	1.67***	0.82
HighQ_Degree	0.97	1.16	0.78	0.76
HighQ_OtherH	0.88	0.80	0.78	0.51***
HighQ_ALevel	0.96	0.77	0.81	0.73
HighQ_OLevel	1.36**	0.83	0.81	0.76
Al:Traditional_Gender_Roles	1.06	1.22***	1.23***	1.17**
A2: Traditonal_Family	1.05	1.20***	1.33***	1.28***
A3:Working_Women	0.95	0.83***	0.84**	0.81***
Income_Tot	0.98***	0.94*	0.96***	0.95***
GHQ_Wellbeing	0.99		0.97*	0.99
Health_status	1.00			
Constant	- 41			
Observations	Pathways are pre-determined by gender and social attitudes			
Log likelihood , LR χ^2 , Pseudo R ²				

MNL dependent = CLUSTER	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Base category – Cluster 1	Evolving careers	Part-time careers	Caring intensive	Decaying careers
Age*Trailing-edge_BB	1.01**	1.00	1.02**	1.07***
Age*Leading-edge_BB	0.98***	0.98***	1.03***	1.06***
Age*Post-depression_preBB	0.98***	0.99	1.06***	1.11***
Age*Pre-depression_preBB				
FEMALE	Cluster I	are riche	er than th	he rest
ms_MarCohCiv	from th	e start, h	ealthier	than
HighQ_Degree	Cluster	rs $4-5$ and	d margin	allv
HighQ_OtherH				
HighQ_ALevel	nap	oler than	Cluster	4
HighQ_OLevel	1.36**		0.81	0.76
Al:Traditional_Gender_Roles	1.06	1.22	1.23***	1.17**
A2: Traditonal_Family	1.05	1.20***	1.33***	1.28***
A3:Working_Women	0.95	0.83***	0.84**	0.81***
Income_Tot	0.98***	0.94***	0.96***	0.95***
GHQ_Wellbeing	0.99	0.98	0.97*	0.99
Health_status	1.08	0.91	0.74***	0.60***
Constant	0.85	0.42***	0.23***	0.18***
Observations, Log likelihood , LR χ^2 , Pseudo R ²	4105 -44	459.59 3942.	28***	0.3065

3. CAUSAL INFERENCE ANALYSIS: DIFFERENCE IN DIFFERENCES ESTIMATES FOR INCOME, WELLBEING, HEALTH

IncomeTot = $\beta_0 + \beta_L \text{LAST}_yr + \Sigma \beta_i \text{CLUSTER} j + \Sigma \beta_j \text{CLUSTER} j * \text{LAST}_yr + \Sigma \beta_n X_n$ (1)

GHQ_Wellbeing= $\beta_0 + \beta_L \text{LAST}_yr + \Sigma \beta_i \text{CLUSTER} j + \Sigma \beta_j \text{CLUSTER} j * \text{LAST}_yr + \Sigma \beta_n X_n$ (2)

Health = $\beta_0 + \beta_L \text{LAST}_yr + \Sigma \beta_i \text{CLUSTER} j + \Sigma \beta_j \text{CLUSTER} j * \text{LAST}_yr + \Sigma \beta_n X_n$ (3)

LAST_yr = 1 for the last, 'follow-up' year; = 0 for the first, 'baseline', year

CLUSTER*j* = 1 for 'treated' Clusters 2-5; Cluster 1 = 'control'

CLUSTERj*LAST_yr interacts CLUSTERj and the last, followup, year of the sequence \rightarrow **difference-in-differences** effects

Difference in difference	Income_Tot	GHQ_Wellbeing	Health
LAST_yr	4.01***	-0.69***	-0.26***
Cluster2 (Evolving)	-3.25***	-0.14	0.0052
Cluster3 (Part-time)	-5.93***	-0.45*	-0.14***
Cluster4 (Caring Intensive)	-4.23***	-1.17***	-0.17***
Cluster5 (Decaying)	-5.15***	-0.93***	-0.26***
Cluster2_LAST_yr	2.05***	-0.22	-0.0059
Cluster3_LAST_yr	-2.39***	-0.16	0.094*
Cluster4_LAST_yr	-4.99***	-0.98**	-0.24***
Cluster5_LAST_yr	-2.87***	-0.71**	-0.25***

Coefficients of Clusterj_LAST_yr \rightarrow difference-indifference (impact) of Cluster 2-5 pathways over 15-20 years (baseline \rightarrow follow-up)

SUMMARY

- Persistence: 5 distinct employment-caregiving pathways
 - I. Full-time careers; 2. Evolving careers; 3. Part-time careers;
 4. Caring intensive; 5. Decaying careers
- Pre-determination: Age-cohort, gender & social attitudes shape trajectories
 - E.g. more traditional attitudes towards gender roles, family and working women \rightarrow clusters 3, 4 and 5
- Diverging/converging outcomes ~ cumulative (dis)advantage & path dependence: Some income, wellbeing and health gaps widen others narrow –)
 - Cluster 2: income gap with Cluster 1 narrows
 - Cluster 3: poorer but healthier relative to Cluster 1 work-life balance?
 - Cluster 4: much poorer, much lower wellbeing, worse health -Caregiver burden (Adelman et al. 2014)?
 - Cluster 5: relatively poorer and much lower health status

LIMITATIONS

The data

- Only 15-20 years
- Some lack of consistency between BHPS and US
- Sample attrition
 - Alternatives: retrospective life history data, time-use data

The methods

- Discretion over substitution penalties and number of clusters (Halpin, 2010; Piccarreta 2012; Potârcă *et al.*, 2013)
- Advantage: Retains the sequential character of lifehistories as entities while enabling grouping of all different sequence element combinations
 - 'just about fishing for patterns' Potârcă et al. (2013:81)